
Let’s get started

Quarkus native
How hard can it
be ?
Miniconf/21-04-2024
Ronald Spierenburg

Let’s get started

Plan of action!
2

Introduction1

About Quarkus and native compilation2

How does quarkus help ?3

Demo4

What did we do in our project @ASML5

Conclusions6

7

Introduction
• Ronald Spierenburg

• Writes software
• Likes investigating weird problems (although he gets frustrated with them)
• Is in software consultancy since 2005

• Born far away from North Brabant
• Age : 42

• Currently working @ASML on the Integrated Productivity Analytics
project.

3

Quarkus and native compilation
• Quarkus

• Native is a first class resident in Quarkus

4

Pros and cons
5

Pros
• Faster startup
• Peak performance at beginning
• Small standalone binary
• Memory footprint small (RSS)

Cons
• Slower development cycle
• Lower peak performance
• Security patches require recompilation
• Not portable
• Lacks behind in terms of tooling

support

• Or, for ASML : decompilation is way
harder

How does it work
6

Not supported
• Dynamic classloading
• InvokeDynamic & method handles
• Finalizer
• Security manager
• JVMTI, JMX, Native VM interfaces

Ok, with caveats
• Reflection (manual)
• Dynamic Proxy
• JNI (manual)
• Static initalizers (eager)
• Lamda’s, Threads
• References

Quarkus
can help!

But Ronald, how does Quarkus help us ?
• Quarkus ecosystem is designed from the core to support native compilation
• All quarkus extensions support have native compilation support
• Property driven customisation (application.properties) or json config file in META-

INF/native-image/

7

quarkus.native.resources.includes=foo/**,bar/**/*.txt
quarkus.native.resources.excludes=foo/private/**

{
"resources": [
{
"pattern": ".*\\.xml$"

},
{
"pattern": ".*\\.json$"

}
]

}

But Ronald, how does Quarkus help us ? (2)
• Register for reflection. This is for every DTO!

• Delay class initialisation

8

@RegisterForReflection
public class MyClass {
}

quarkus.native.additional-build-args=--initialize-at-run-
time=com.example.SomeClass\\,org.acme.SomeOtherClass

Demo

Project with native compilation

What did we do in our project @ASML
• Let’s start, this seems easy
• Yay, it works
• Hmm, this does not
• A long time staring at the screen
• Questioning life
• Lot of googling
• A lot of swearing
• Debugging native binaries
• More swearing & sleepless nights
• Work around native compilation
• Try to forget everything that happened

10

What did we do in our project @ASML
1) A @RegisterForReflection quarkus extension

• Takes all the specified classes and libraries
• And registers them for reflection in their entirety
• Because developers can’t be trusted and DTO’s can reliably be identified

2) An embedded jvm for pdf generation
1) We were stuck on apache FOP for legacy reasons

2) It has no support for GraalVM
3) Heavily depends on reflection and java.awt
4) So we ignored it and moved PDF’s to a separate embedded microservice

11

Apache™ FOP (Formatting Objects Processor) is a print
formatter driven by XSL formatting objects (XSL-FO) and an
output independent formatter. It renders to PDF, PS, PCL,
AFP, XML, Print, AWT and PNG, RTF and TXT.

Conclusions
Creating native binaries is easy, as long as:

• You’re aware of the quarkus conventions
• You use thorough code inspections, or use brute force

@RegisterForReflection
• You don’t mind longer build times
• You use @QuarkusIntegrationTest for native integration tests
• And stick to the ecosystem

• Or at least make GraalVM support a search criterium for dependencies

12

Any questions?

